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The program undertaken was designed t o  determine the app l i c ab i l i t y  of 
, d i e l e c t r i c  he&j~~&Ao the drying of ceramic components fabr ica ted by wet 
processing techniques. The general  cha r ac t e r i s t i c s  of d i e l e c t r i c  drying 
were studied along with the  spec i f i c  moisture removal cha r ac t e r i s t i c s  for  
a t yp i ca l  wet-processed ceramic composition (5% clay,  25% f l i n t ,  25% feld-  
spa r ) .  The r e s u l t s  obtained i n  t h i a  invest igat ion showed t ha t  rapid  drying 
rates f o r  ceramics a r e  possible with the d i e l e c t r i c  heating method. Wet 
ceramic componenta can be heated and dr ied  uniformly i n  the  e l e c t r i c  f i e l d  
without the  development of severe temperature and moisture gradients which 
might lead t o  cracking and/or warping of the components. Although drying 
r a t e s  were found t o  be e x t r e m l y  high, they a r e  l imited by the rupture 

I s t reng th  of the mater ia l ,  i , e . ,  i ts a b i l i t y  t o  withstand the  s t r e s s e s  
developed by the pressure of the escaping water vapor. Die lec t r i c  drying 
holds i n t e r e s t i ng  p o s s i b i l i t i e s  f o r  drying high-cost ceramic components o r  
component systems which a r e  d i f f i c u l t  t o  process by other techniques. 
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INTRODUCTION 1 
The explorat ion of ceramic systems fo r  Ordnance appl ica t ions  a t  

Rodman Laboratory, Watert own Arsenal, requires  deta i led  s tudies  of a l l  
phases of product fabr ica t ion.  One of the most common ceramic forming 
techniques, pa r t i cu l a r l y  fo r  highly complex component systems, is wet 
processing; i. e . ,  s l i p  cas t ing,  p l a s t i c  forming, e t c .  The subsequent 
drying operation is a c r i t i c a l  one, and improper drying may r e s u l t  i n  
e i t h e r  cracking or warping of the component. In many current  ceramic 
programs, present convent i o m l  drying techniques have proved e i t h e r  un- 
su i t ab le  or  infeas ible  fo r  e f f i c i e n t  product ion operat ion. Drying ceramics 
i n  ultrahigh-frequency e l e c t r i c a l  f i e l d s  ( d i e l e c t r i c  drying) ,  a r e l a t i v e l y  
new concept, shows promise as a useful  too l ,  not only i n  laboratory and 
pi lo t -plant  drying operations,  but i n  production a s  well. 

When an e l e c t r i c a l l y  nonconducting mater ia l  or  insula tor  is subjected 
t o  the s t r e s s e s  of an e l e c t r i c  f i e l d ,  the mater ia l  w i l l  undergo a r i s e  i n  
temperature. This heating phenomna is known a s  d i e l e c t r i c  heating. The 
magnitude of temperature r i s e  w i l l  be dependent upon the e l e c t r i c a l  prop- 
e r t i e s  of the mater ia l  and the s t reng th  of the f i e l d .  Although d i e l e c t r i c  
heating expe i imnts  were conducted as far back as  the mid-nineteenth 
century, the technique developed was not explored for p r ac t i c a l  i ndus t r i a l  
heating appl ica t ions  u n t i l  just t h i r t y  years ago. Since then nurnerous 
appl ica t ions  have been discovered, and t h i s  heating method now plays an  
important ro le  i n  the p l a s t i c ,  woodworking, and food processing indust r ies .  
Because of i ts unusual e l e c t r i c a l  cha r ac t e r i s t i c s ,  water can be heated by 
the d i e l e c t r i c  heating mthod a t  a g rea te r  r a t e  than most other materials .  
It is underetandable, therefore ,  why moisture removal has become an  impor- 
t an t  and na tu ra l  app l ica t ion  fo r  t h i s  unique mthod.  

, Conventional drying methods now used i n  the ceramic industry, other 
than a i r  drying, require  the app l ica t ion  of heat ex te rna l  t o  the ware. 
The adjustment of temperature and humidity must be ca r e fu l l y  control led  
t o  prevent temperature and moisture gradients within the  ware. I f  the 
surface temperature of the ware is allowed t o  r i s e  a t  a greater  r a t e  than 
t h a t  of the i n t e r i o r ,  then the r a t e  of evaporation of moisture from the 
surface  w i l l  be g rea te r  than the r a t e  of d i f fus ion  of water from the in- 
t e r i o r  of the ware t o  the surface.  This w i l l  r e s u l t  not only i n  a break 
i n  the cap i l l a ry  flow of water from i n t e r i o r  regions t o  the surface ,  thereby 
slowing down the drying process, but w i l l  a l s o  cause the f o r m t i o n  of 
moisture gradients which r e s u l t  i n  d i f f e r e n t i a l  shrinkage. Where d i f f e r -  
e n t i a l  shrinkage occurs, s t r e s s e s  are s e t  up i n  the ware and cracking or 
warping r e s u l t s .  Since d i e l e c t r i c  heating produces r e l a t i v e l y  uniform 
heating thrpughout a given mss of mater ia l  regardless of s i z e ,  it  seems 
i dea l l y  sui%ed a s  a method fo r  the  removal of moisture from wet-processed 
ceramic bodies. 

Several invest igators1# '  have looked i n to  the use of e lec t ron ic  drx- -- 
ing as a means of removing water from ceramic bodies. Previous invest igat ions  - * _ -_I_ 



have shown the drying r a t e s  obtained by the d i e l e c t r i c  heating method t o  
be much grea te r  than those found with more conventional methods now i n  use. 
Since there  is uniform heating throughout a  given cross sec t ion ,  the water 
can be heated a s  rap id ly  as possible. The only l imi t ing fac to rs  con t ro l l ing  
the  s a t e  of moisture removal from a mater ia l  is the rupture s t reng th  of the 
mater ia l ,  If the r a t e  of escape of the water vapor becomes too high, the 
s t ruc tu re  can crack or d i s in tegra te  due t o  severe in te rna l  pressure buildup. 
This is pa r t i cu l a r l y  t rue  of ceramic bodies of the c lay  type with r e l a t i v e l y  
low permeability. 

Because of the high i n i t i a l  equipment cos t s  and high operating expenses, 
e lec t ron ic  drying has not been f u l l y  exploited fo r  u t i l i z a t i o n  i n  ceramic 
operations. While t h i s  heating method does not seem p rac t i c a l  for low-cost 
production ceramic un i t s ,  it might be found of great  benef i t ,  from both 
qua l i t y  control  and economic standpoints ,  fo r  the drying of large ceramic 
sect ions  presently requir ing very long drying schedules, f o r  high cos t  
components, or i n  specia l ized work where present techniques are unsuitable.  

The purpose of t h i s  invest igat ion was t o  study the general  character-  
i s t i c s  of d i e l e c t r i c  heating and the spec i f i c  moisture removal character-  
i s t i c s  of a t yp i ca l  wet-processed ceramic composition dr ied  by t h i s  technique. 

f 

THF,ORETICAL CONSIDERATIONS 

When a  d i e l e c t r i c  mater ia l  is placed between e lect rodes  t o  which an 
a l t e rna t i ng  po ten t ia l  has been applied,  the usual  spheroidal  s t r uc tu r e  of 
the atom is d i s to r ted  a s  the e lec t rons  within the mater ia l  a l i g n  themselves 
with the e l e c t r i c  f i e l d .  * The negatively charged e lect rons  w i l l  be a t t r a c t e d  
t o  the  posi t ive  e lec t rode,  while being repel led  from the negative. The 
pos i t ive ly  charged nucleus w i l l  receive a force i n  the opposite d i rec t ion .  
when conductor po la r i ty  is reversed, e lec t ron  paths w i l l  be d i s to r ted  i n  
the  opposite d i rec t ion .  In  the course of one complete cycle,  a lag i n  the 
e l e c t ron  displacement is encountered, r e l a t i v e  t o  the change i n  conductor 
po la r i ty ,  which r e s u l t s  i n  an energy loss  manifesting i t s e l f  i n  the form 
of heat  energy. The 'dipole displacement versus po ten t ia l  gradient  r e l a t  ion- 
s h i p  follows a  cha r ac t e r i s t i c  hys te res i s  loop configuration with the energy 
l o s s  being equal t o  the area  within the curve. In  e l e c t r i c  f i e l d s  where 
rapid  reversa l  of po l a r i t y  takes place, the molecules of the nonconductor 
a r e  i n  a  constant s t a t e  of ag i t a t i on ,  and d i s t o r t i o n  of the  e l e c t ron  path 
and the rapid displacement of e lec t rons  r e su l t s .  While the t o t a l  heating 
e f f ec t  induced i n  a s ing le  molecule t b o u g h  one complete r eve r s a l  i n  po l a r i t y  
(one cyc le )  is i n f i n i t e l y  small, when an i n f i n i t e  number of molecules a r e  
s t ressed  a t  u l t rahigh frequencies ( i n  the thousands of cycles per second 
range o r  h igher ) ,  the t o t a l  energy loss  and r e su l t an t  heating e f f ec t  is 
considerable. 

The heat energy developed i n  d i e l e c t r i c  heating methods has been 
Sound t o  be dependent not only on the voltage applied across the  d i e l e c t r i c  
mater ia l  and the frequency of the e lec t ron  displacement, but a l s o  upon the 



e l e c t r i c a l  proper t ies  of the  ma te r i a l  or  composite and the  mass d i s t r i b u t i o n  
between the  e lec t rodes .   he power generated i n  a d i e l e c t r i c  material and 

f the  resul . tant  heat ing e f f e c t  or  energy l o s s  can be expressed by the following 
re la t ionsh ip :  

where 

f = frequency of  e l e c t r i c  f i e l d ,  cps 

E = voltage across  d i e l e c t r i c  mater ia l  

( k '  cos 8 )  = l o s s  f a c t o r  (6 " ) of d i e l e c t r i c  ma te r i a l  

A = surface area of masa under e lec t rodes ,  in2 

t = thickness of mass, in. 

The important proper t ies  required of insu la t ing  mater ia ls  t o  be heated by 
t h i s  method a r e  good d i e l e c t r i c  s t r eng th  and high l o s s  f ac to r .  The di-  
e l e c t r i c  s t r e n g t h  is the  a b i l i t y  of the ma te r i a l  t o  withstand e l e c t r i c a l  
breakdown, and is expressed i n  vol ts /mi l .  The l o s s  f a c t o r  ( E  " )  is a 
product of the d i e l e c t r i c  constant  ( k '  ) of the  ma te r i a l  and its power 
f ac to r  (cos 8) , The r e l a t i v e  d i e l e c t r i c  constant  k '  is a measure of the  
a b i l i t y  of a ma te r i a l  t o  s t o r e  a charge and can be expressed as f ~ l l o w s : ~  

where C is the capacitance of the d i e l e c t r i c  mater ia l  between the  p l a t e s  
of a condenser, Co is the  capacitance of the system when a vacuum of a 
s i m i l a r  geometry t o  the  d i e l e c t r i c  e x i s t s  between t h e  p la te s ,  and r '  and 
6, represent  the  r e a l  permitt  i v i t i e s  o r  d i e l e c t r i c  cons tants  of the  d i -  
e l e c  t r ' lc  and vacuum respec t ive ly  . The power f a c t o r  represents  the  amount 
of leakage current  ( I ~ )  which w i l l  flow through an insu la to r  t o  produce a 
heat  loss .  Both d i e l e c t r i c  cons tant  and power f a c t o r  depend upon the  
nature  of the  mater ia l ,  temperature, moisture exposure, voltage and f r e -  
quency, and o ther  fac tors .  A s  can be observed i n  Equation 1, an increase 
i n  the  l o s s  f a c t o r  ( E '  ' ), with o ther  var iables  cons tant ,  would r e s u l t  i n  
an increased heat ing  e f f e c t .  Table I gives the  d i e l e c t r i c  charac terds t  i c s  
f o r  some t y p i c a l  nonconducting mater ia ls .  While it is not f e a s i b l e  o r  
des i rab le  i n  most cases t o  vary the e l e c t r i c a l  proper t ies  of a ma te r i a l  t o  
be heated o r  its. mass d i s t r i b u t i o n ,  the  i n t e n s i t y  of the  e l e c t r i c  f i e l d  
can be var ied  t o  y ie ld  maximum heat ing  r a t e s .  The most important s i n g l e  
f a c t o r  is the voltage appl ied  across the mater ia l ,  s ince  the  heat ing e f f e c t  
is a function of the  square of the  voltage as s e e n i n  Equation 1. The maximum 
allowable voltage is determined by the  d i e l e c t r i c  s t r eng th  of the  m t e r i a l  
t o  be heated, When moisture is present i n  the mater ia l ,  the d i e l e c t r i c  
~ t r e n g t h  is g r e a t l y  reduced and with it the maximum allowable voltage.  



TABLE I 

ELECTRICAL PROPERTIES OF SOME TYPICAL DIELECTRIC MATERIALS~ 
+. 

Dielectric  Dielectric  Power Factor 
Strength* Constant (k') cos. 0 
vo 1 t s / m i  1 (106 cycles) (108 cycles)  
@ 25 C @ 26 C @ 26 C 

fised S i l i c a  BOO 3.76 - 4.1 0.000e 

Cordieri te 40 - 250 4.6 - 5.4 0*004 - 0.012 
Steatite #)O - 400 5.5 - 7 .6 0.0002 - 0.004 
Alumina 40 - 160 4.5 - 8.4 0.0002 - 0.01 
Porcelain, Wet Process 00 - 400 6.0 - 7.0 0.008 - 0.01. 
Porcelain, Dry Process 40 - 240 6.0 - 8.0 0.003 - 0.02 
Titanium D l  oxide 100 - 210 14 - 110 0.0002 - 0.005 
Ti tanates 50 - 300 18 - 12,000 0.0001 - 0.02 
@a, Sr, Ca, Yg and Pb) 

Water - - 7 8 0.04 

*Recreases with increased frequency 

Another fac to r ,  frequency ( f ) ,  can also be varied t o  y ie ld  g rea te r  heating 
r a t e s ,  though its e f f e c t  is not a s  g rea t  as t h a t  r e su l t i ng  from voltage 
var ia t ions .  There a r e  l imi ta t ions ,  however, on the use of extremely high 
frequencies. One reason is t ha t  the impedance of the in tere lect rode capaci- 
tance var ies  with frequency, To obta in  voltages a t  a given frequency, there-  
fore ,  the impedance of the e lec t rode system must be matched t o  the output 
impedance of the high-frequency energy source. When these impedances match 
exaotly,  a maximurn heating e f f e c t  is obtained. If the impedances vary 
s l i g h t l y ,  heating is s t i l l  noted, though the e f f e c t  is not a s  g rea t .  When 
the vaeia t ion between impedance is too large ,  no heating e f f e c t  r e su l t s .  

Another important considerat ion which might r e s t r i c t  the choice of 
frequency u t i l i z e d  i n  the d i e l e c t r i c  heating apparatus is the harmful e f f e c t  
which r e s u l t s  f r m  the  formation of standing waves. When standing waves 
a r e  formed i n  the e l e c t r i c  f i e l d ,  the voltage along the e lect rodes  becomes 
maximum a t  some points  ( the  ant inodes) ,  and absent from others  ( the nodes), 
r a the r  than uniform over the e lec t rodes .  This phenomena would lead t o  non- 
uniform heating. When an e lect rode is designed s o  t ha t  i t s  length equals 
any i n t eg ra l  number of half wavelengths f o r  a given frequency, standing 
waves w i l l  develop. To prevent the formation of standing waves and the non- 
uniform heating which would r e s u l t ,  the proper re la t ionsh ip  between frequency 
and electrode dimension has t o  be chosen. 

I n  d i e l e c t r i c  heating appl ica t ions ,  voltages developed are usually i n  
the  range of ,1 ,000  t o  5,000 vo l t s ,  with frequencies ranging between 1 and 
50 m i l l i o n  cycles per second, sometims higher. 



I n  m n y  a p p l i c a t i o n s  it is advantageous t o  s tudy  the  geometry of the  
component t o  be d r i e d .  It can be seen from Equation 1 t h a t  a n  inc rease  
i n  the a rea- th ickness  r a t i o  w i l l  r e s u l t  i n  a n  increased hea t ing  e f f e c t .  
A component could, t h e r e f o r e ,  be d r i e d  more e f f i c i e n t l y  with the  l a r g e s t  
poss ib le  t o t a l  su r f ace  a r e a  exposed t o  the  f i e l d  w i th  a corresponding 
th i ckness  t o  g ive  the  maximum ~ / t  value poss ib le .  

While vol tage  a c r o s s  t he  e l e c t r o d e s  can be ad jus t ed  t o  vary the  in -  
t e n s i t y  of  the  e l e c t r i c  f i e l d  and o b t a i n  maximum hea t ing ,  another  c o n t r o l  
f a c t o r  b u i l t  i n t o  most i n d u s t r i a l  d i e l e c t r i c  hea t ing  equipment all.ows f o r  
a modi f ica t ion  of t h e  vol tage  a c r o s s  the  ma te r i a l .  This  is accomplished 
by c o n t r o l  of t he  i n t e r e l e c t r o d e  capac i tance .  By u t i l i z i n g  a motor- 
c o n t r o l l e d  upper e l e c t r o d e ,  t he  a i r  gap between the  e l e c t r o d e  and m a t e r i a l  
can  be var ied .  Since the  a i r  gap  r e p r e s e n t s  a capaci tance i n  s e r i e s  with 
the  m a t e r i a l ,  and the  vol tage  drop ac ros s  capac i tances  i n  s e r i e s  is a d d i t i v e ,  
t he  vol tage  drop  a c r o s s  t he  a i r  gap reduces t h e  vol tage  impressed a c r o s s  
t he  m a t e r i a l ,  For maximum hea t ing ,  t he  a i r  gap should be a s  smal l  a s  
poss ib l e .  If t h e  e l e c t r o d e  approaches too  c l o s e  t o  the  ma te r i a l ,  however, 
t he  danger of a r c i n g  is present  due t o  i o n i z a t i o n  o f  the  a i r  i n  t he  remain- 
ing gap. The v a r i a t i o n  of  a i r  gap between the  e l e c t r o d e  and m a t e r i a l  
r e p r e s e n t s  another  method t o  match the  i n t e r e l e c t r o d e  impedance. In  s o m  
commercial equipment t h i s  is the  only m t h o d  used f o r  matching impedances. 

I n  order  t o  o b t a i n  uniform hea t ing ,  both the  e l e c t r i c a l  c h a r a c t e r i s t i c s  
and mass d i s t r i b u t i o n  of  a component and/or t he  e n t i r e  workload should be 
uniform. When m a t e r i a l  composites o r  s t r u c t u r e s  con ta in  c o n s t i t u e n t s  of  
vasying e l e c t r i c a l  p rope r t i e s ,  s e l e c t i v e  hea t ing  w i l l  r e s u l t .  Th i s  is the  
case ,  f o r  example, wi th  many laminate-type s t r u c t u r e s  where l a y e r s  of  
m a t e r i a l  wi th  d i f f e r e n t  e l e c t r i c a l  p r o p e r t i e s  a r e  present .  To counterac t  
s e l e c t i v e  hea t ing  e f f e c t s ,  s p e c i a l  techniques,  depending on the  type and 
s e v e r i t y  of nonuniformity encountered, are requi red .  When components wi th  
i r r e g u l a r  geometr ies  o r  uneven mass d i s t r i b u t i o n  a r e  encountered, s p e c i a l  
techniques a r e  a l s o  r equ i r ed  t o  g e t  uniform h e a t i n g  throughout t h e  conf ig-  
u ra t ion .  In some cases  t he  e l e c t r o d e s  may be designed t o  conform t o  corn- 
ponent con f igu ra t ion ,  while i n  o the r s ,  uniform hea t ing  can be had by 
ba lanc ing  the  workload. By balancing the  load ,  through the  use of  e i t h e r  
s imiias components o r  dummy loads properly pos i t ioned  around the  r e g u l a r  
workload, compensat ion f o r  nonuniform mass can  be obtained.  Components of 
similar he igh t s  should be grouped toge the r  t o  o b t a i n  uniform hea t ing .  A s  
a g e n e r a l  r u l e ,  t he  g r e a t e r  t he  load  between t h e  e l ec t rodes ,  t h e  g r e a t e r  
the hea t ing  r a t e  because the  a b i l i t y  t o  load the  high-frequency energy 
source is b e t t e r .  

A s  mentioned previously,  t he  hea t ing  r a t e  of water  i n  high-frequency 
e l e c t r i c a l  f i e l d s  is h igher  than  f o r  most o the r  ma te r i a l s .  When n la te r ia l s  
con ta in ing  moisture,  f o r  example, wet-processed ceramics,  a r e  placed w i t h i n  
a high-frequency e l e c t r i c a l  f i e l d  and s t r e s s e d  by a l t e r n a t i n g  cu r ren t  v o l t -  

* 
age ,  t he  water wi th  i t s  unusual e l e c t r i c a l  c h a r a c t e r i s t i c s  h e a t s  up r a p i d l y ,  
and the  complete mass is brought up t o  temperature uniformly. For t h i s  
case the  eLec t r i ca1  p r o p e r t i e s  of importance for  d i e l e c t r i c  hea t ing  a r e  



determined by the  water phase. While conventional heat ing methods cause 
t h e  formation of temperature gradients  wi th in  the ware, with the  surface  
temperature higher than i n t e r i o r  regions,  the  d i e l e c t r i c  heat ing method 
gives  uniform heating u n t i l  moisture s t a r t s  evaporating from the  surface .  
The vaporizat ion of the  moisture a t  the  surface  has a tendency t o  cool  the  
su r face ,  When moisture has been completely el iminated,  the  energy input 
t o  the ma te r i a l  w i l l  decrease a s  the  l o s s  f a c t o r  of the mass decreases. 

It takes approximately 1,100 Btu of  heat  energy t o  evaporate one pound 
of water. To evaporate one pound of  water e l e c t r i c a l l y ,  19.6 kw of high- 
frequency energy is  required.  ' An e l e c t r i c a l  un i t  with t h i s  power output 
could evaporate 60 pounds of water an hour and would have a thermal e f f i -  
ciency of 5% and requ i re  40 kw input e l e c t r i c a l  energy t o  operate. It has 
been ca lcu la ted2  t h a t  with a 20 kw high-frequency u n i t ,  the  cos t  t o  evapo- 
r a t e  a pound of water w i l l  be approx imte ly  65 cents .  I n  previous exper i -  
ments comparing e l e c t r o n i c  drying with e l e c t r i c a l  inf rared  heat  sources,  
gas in f ra red  heat  sources, and conventional e l e c t r i c  oven drying, it was 
found t h a t  t o  remove between 450-490 grams of water from a standard b r i ck  
shape, 60 t o  70 minutes were required by the  e l e c t r o n i c  system and 14 t o  
18 hours by the  o ther  mthods .  

EQUIPMENT AND PROCEDURE 

Elec t ronic  Dryer 

The d i e l e c t r i c  heat ing  f a c i l i t y  used i n  t h i s  inves t iga t ion  was ~r com- 
mercial  u n i t  and is shown i n  Figure 1. This un i t  r equ i res  e l e c t r i c a l  energy 
from a 3-phase, 60-cycle, 410-to-490-volt a l t e rna t ing-cur ren t  source which 
is converted t o  radio-frequency energy a t  approximately 15 mcps. The power 
ava i l ab le  f o r  heat ing i a  1 6  kw; however, only 83% of the  r a t e d  capaci ty  is  
u t i l i z e d  t o  provide a s a f e t y  margin. The c i r c u i t  diagram for  the e l ec t rode  
c i r c u i t  is shown i n  Figure 2. The f l a t - p l a t e  rec tangular  e l ec t rodes ,  as 
shown i n  Figure 3, a r e  aluminum, and the  height  of  the  upper e l ec t rode  can 
be automat ica l ly  adjuhted by motor cont ro l .  The maximum workload height  
which can f i t  between the e l ec t rodes  is 14 inches. The u n i t ,  which was 
designed f o r  production-type operat ions,  is equipped with a metal mesh con- 
veyor b e l t  operated by a var iable  speed motor. A blower is provided i n  the  
heat ing  chamber fo r  the  rapid  removal of water vapor formed during the drying 
cycle . 

The o s c i l l a t o r  is of  the  d i rec t - tank loaded type, t h a t  is, the  work 
placed between the e l ec t rodes  which form the  tank condenser becomes pa r t  of 
the  tank condbnser of the  o s c i l l a t o r .  There is no separa t ion  e i t h e r  e l e c -  
t r i c a l l y  o r  physica l ly  between the  high-frequency generator  and the  load, 
I n  t h i s  type c i r c u i t  there  is  no need f o r  matching impedances even under 
varying workloads because the  o s c i l l a t o r  is constant ly  i n  resonance. 

While no con t ro l s  were provided f o r  varying e i t h e r  the voltage o r  f r e -  
quency i n  t h i s  p a r t i c u l a r  d i e l e c t r i c  heat ing f a c i l i t y ,  these values had been 



preadjusted t o  y i e l d  a f i e l d  s t r e n g t h  capable of evaporating 25 pounds of  
water per hour. Compared t o  a 20-kw u n i t  mentioned previously which could 
evaporate 60 pounds of water per hour, the cos t  of  evaporating a pound of  
water would be a l i t t l e  over 1.3 cen t s .  Preliminary work with the  d i e l e c t r i c  
u n i t  showed t h a t  the  i n t e n s i t y  of the  e l e c t r i c  f i e l d  was g rea t  enough t o  
y ie ld  a maximum heating r a t e  fo r  drying wet-processed ceramics. With any 
ceramic, e i t h e r  c l a y  or  nonplast ic  oxide type, a t  any moisture content ,  the  
nlaximum s a f e  r a t e  of drying (as  determined by rupture s t r eng th  of ma te r i a l  
s t r e s s e d  i n t e r n a l l y  by escaping water vapor) could be exceeded. Since the  
maximum s a f e  heat ing  r a t e  f o r  ceramics was ava i l ab le ,  a v a r i a t i o n  i n  a i r  
gap through the  use of a mobile e lec t rode  could be u t i l i z e d  t o  g r e a t  ad- 
vantage t o  modify the  voltage drop across  the  ma te r i a l  and thus reduce the  
r a t e  of heat ing and al low a s tudy o f  the r a t e  of drying up t o  the  maximum 
s a f e  r a t e .  

Experimental Procedure 

Since the  voltage drop ac ross  a workload is va r i ab le  during the  drying 
cycle  and extremely d i f f i c u l t  t o  measure, it was decided t o  c o r r e l a t e  the  
s t r e n g t h  of the  e l e c t r i c  f i e l d  i n  the  d i e l e c t r i c  un i t  under varying a i r  gaps 
with the  time required t o  evaporate a given quan t i ty  of water with a f ixed 
i n i t i a l  ~ / t  r a t i o .  This was accomplished using a c y l i n d r i c a l  nonporous 
ceramic c ruc ib le  containing a given quan t i ty  of water. The exposed surface  
a rea  and o r i g i n a l  height  of  the wster column i n  the  c ruc ib le  were determined 
and the r a t e  of  water l o s s  measured f o r  varying a i r  gaps. 

A t y p i c a l  ceramic composition was used t o  s tudy the  drying charac ter -  
ist i c s  of  ceramic-type bodies i n  ultrahigh-frequency e l e c t r i c a l  f i e l d s .  
The body, composed of equal  p a r t s  Georgia kaolin,  Tennessee b a l l  c l ay ,  
f l i n t ,  and fe ldspar ,  was ba l l -mi l l  blended f o r  8 hours. The moisture con- 
t e g t  of the  blended body was brought t o  20% by weight. Specimens were 
hydraul ica l ly  pressed i n  a s t e e l  d i e  a t  750 p s i  t o  3 inches square by 3/8 
inch Shick. The hydraulic  press  and d ie  assembly used are shown i n  Figure 4 
along with s o m  pressed t e s t  specimens. The specimens had good handling 
s t r eng th ,  su f fe red  l i t t l e  l o s s  i n  moisture, and when dry,  had a s p e c i f i c  
g r a v i t y  of 1.72. I?besaed specimens were d r i ed  i n  the  d i e l e c t r i c  oven 
immediately a f t e r  f ab r i ca t ion  t o  prevent losses  i n  moisture t o  the  atmosphere. 

Composite spec imns  of two d i f f e r e n t  he ights  were b u i l t  up from the  
individual  pressed compacts, one containing two compacts (0.75 inch) ,  the  
other ,  four (1.5 inches) .  The composite specimens were formed by s tacking 
one compact on another and were designed t o  al low a study of moisture 
gradients  through the  cross  s e c t i o n  of  a drying specimen. The compacts 
had good f l a t n e s s ,  and water movement through the  e n t i r e  composite was not 

1 re tarded a6 compact in ter faces ,  Good contact  (between compacts ) was a l s o  

des i red  for  prevention of a i r  spaces between the l aye r s  which would a l t e r  
the  e l e c t r i c a l  proper t ies  of  the  mass and the re fo re  cause changes i n  i t s  

w heat ing  and drying c h a r a c t e r i s t i c s .  



The fol lowing p a r t  o f  the experimental  program was designed t o  d e t e r -  
mine the  r a t e s  of moisture removal from a t y p i c a l  ceramic body d r i e d  i n  a 
high-frequency e l e c t r i c a l  f i e l d .  I n  a d d i t i o n ,  a s tudy  was made of t he  
temperature and moisture g r a d i e n t s  developed i n  a  specimen dur ing  var ious  
s t a g e s  of t h e  dry ing  cyc le .  The composite specimens were d r i e d  i n  the 
d i e l e c t r i c  oven s e p a r a t e l y ,  r e s t i n g  on an a sbes tos  board and centered  
between the  e l e c t r o d e s .  P r i o r  t o  t e s t i n g ,  each compact comprising the  
composite was weighed. The whole composite was then  brought i n t o  the 
f i e l d  and l e f t  t h e r e  f o r  a  per iod of e i t h e r  5 o r  L O  minutes (depending on 
the  r a t e  of d r y i n g ) ,  t hen  removed, and the  ind iv idua l  s e c t i o n s  weighed 
again.  This  ope ra t ion  was repea ted  u n t i l  a l l  t he  moisture had been r e -  
moved. During each  i n t e r v a l  of t h e  dry ing  cyc le  t he  ternperature of the  
specimen a t  its su r f ace ,  i n t e r i o r ,  and a t  t he  ceramic-asbestos i n t e r f a c e  
was measured using a Chromel-Alumel thermocouple and a d i r ec t - r ead ing  
potent iometer .  The whole procedure was repea ted  fo r  varying a i r  gaps and 
s p e c i m n  sizes. 

Inherent  Var iab les  

The f i n a l  phase of  t h i s  i n v e s t i g a t i o n  was t o  s t u d y  the  e f f e c t  of and 
make co r rec t ions  f o r  c e r t a i n  v a r i a b l e s  inherent  i n  t he  method used f o r  
determining t h e  dry ing  r a t e s .  The f i r s t  v a r i a b l e  s tud ied  was the  e f f e c t  
of the  a sbes tos  board on drying time and ternperature. This  was determined 
by dry ing  a t y p i c a l  specimen a t  a convenient drying r a t e  without t he  use 
of t he  a sbes tos  board and r e s t i n g  d i r e c t l y  on t h e  conveyor b e l t .  Drying 
r a t e s ,  moisture and temperature g r a d i e n t s  were a g a i n  measured, and t h e  
d i f f e r e n c e  between t h i s  cyc l e  and t h e  one using t h e  a sbes tos  noted. 

A s  mentioned previous ly ,  t h e  g r e a t e r  t he  load  under t h e  e l e c t r o d e s ,  
t he  g r e a t e r  t he  r e s u l t a n t  hea t ing  e f f e c t  should be. Since only  one sample 
was d r i e d  a t  a time during t he  previous t e s t s ,  it was thought o f  i n t e r e s t  
t o  observe t h e  change i n  dry ing  r a t e  when a f u l l  load was u t i l i z e d .  A t e s t  
specimen wi th  normal moisture content  was s e n t  through the  d i e l e c t r i c  on 
t h e  a sbes tos  p l a t e  wi th  e i g h t  samples of  t he  same he ight  surrounding it. 
The temperature and water  l o s s  of t he  cen te r  sample was measured and com- 
pared wi th  hea t ing  r a t e s  of specimens d r i e d  without  e x t r a  loading of  t h e  
high-frequency f i e i d .  

Spec imns  were f a b r i c a t e d ,  one f o r  each s i z e  group, i n  an i n t e g r a l  
u n i t  r a t h e r  t han  i n  s e c t i o n s ,  and the  e f f e c t  on moisture removal r a t e  and 
temperature d i s t r i b u t i o n  of  t he  s i n g l e  u n i t  over the  composite was s tud ied ,  

The b e n e f i t  o f  e f f e c t i v e l y  u t i l i z i n g  t h e  geometr ica l  con f igu ra t ion  of 
a component t o  o b t a i n  g r e a t e r  hea t ing  rates was s t u d i e d  us ing  a r ec t angu la r  
block (3" x 3" x 4 " ) .  F i r s t  the  specimens were d r i e d  s t and ing  on end wi th  
a g iven  a i b  space between the  t o p  e l e c t r o d e  and su r f ace  of  t he  workload, 
A s i m i l a r  sample was then  d r i e d  on i t s  s ide  with the  l a r g e s t  su r f ace  a r e a  
p a r a l l e l  t o  the  e l e c t r o d e .  The i d e n t i c a l  a i r  space between the  t o p  e l e c t r o d e  w 

and t h e  workload was maintained. 



The f i n a l  var iable  t o  be considered was the e f f e c t  of removing speci-  
mens from the high-frequency f i e l d  during the drying cycle f o r  temperature 
and moisture loss  measurements r a t he r  than allowing them t o  dry completely 

I i n  an uninterrupted cycle. To study the e f f e c t  of in terrupt ing the drying 
cycle on r a t e  of drying, a model system was u t i l i z e d ,  A given volurne of 
water contained i n  a ceramic crucible  was evaporated: (1) i n  an interrupted 
cycle t yp i ca l  of t h a t  used i n  the previous t e s t s ,  and ( 2 )  i n  a continuous 
cycle. In  the continuous cycle, a spec i f i c  time period was chosen and the 
water remaining a f t e r  t ha t  drying period measured-. This was repeated for  
several  drying periods. The amount of water remaining a f t e r  a given time 
with no in te r rup t ion  i n  cycle was compared with the quant i ty  l e f t  a t  the 
s a m  time i n  an in terrupted cycle. From these r e su l t s ,  a correct ion factor  
could be derived t o  allow fo r  a devia t ion i n  r a t e  of water l o s s  from cooling 
and reheating of samples while taking m e a s u r e ~ n t s .  

DISCUSSION OF RESULTS 

The r e s u l t s  of experimental work designed t o  cor re la te  f i e l d  s t reng th  
with r a t e  of moisture removal are shown i n  Figures 5 and 6* Figure 5 shows 
the dependence of drying r a t e  on a i r  gap between the upper e lec t rode of  the 
d i e l e c t r i c  uni t  and the surface of the water. The strong dependence of 
drying r a t e  on a i r  gap can read i ly  be seen. Figure 6 shows the drying r a t e  
curve fo r  the water system st a spec i f i c  a i r  gap. The i n i t i a l  ~ / t  r a t i o  
for  the water sample was 1.64. A s  drying proceeds, the height of the water 
recedes; and reduced drying r a t e s  a r e  encountered a s  the a i r  gap increases 
and the ~ / t  re la t ionsh ip  decreases. Both drying and heating r a t e s  could 
be increased i f  l a rge r  i n i t i a l  ~ / t  r a t i o s  a r e  u t i l i z ed .  Table I1 shows 
the time required t o  evaporate the 50 cc samples a t  severa l  a i r  gaps. The 
f i e l d  s t reng th  of a d i e l e c t r i c  system required t o  evaporate a given velum 
of water with a spec i f i c  ~ / t  r a t i o  can be adjusted by varying the a i r  gap. 

TABLE I1 

TIME REQUIRED TO EVAPORATE A GIVEN VOLUME OF WATER 
AT VARYING FIELD INTENSITIES 

Time Required to Evaporate 
In i t ia l  Air Gap H20 Samples with ~ / t  = 1.64 

(Inches) ( ~ i n u  t e  a) 

2.3 45 (60 CC) 

2.8 70 (60 ca) 

3.8 100 (46 cc) 

4 .8 120 (46 cc) 

5.8 166 (35 cc) , 



The r e s u l t s  obtained on dry ing  a t y p i c a l  wet-processed ceramic body 
i n  a high-frequency f i e l d  a r e  shown i n  F igures  7 through 14. Figure 7 
shows the  v a r i a t i o n  of drying r a t e  wi th  a i r  gap f o r  two composites w i th  
d i f f e r e n t  ~ / t  values and con ta in ing  20% moisture.  The dry ing  r a t e  f o r  
t he  composite wi th  the  l a r g e s t  ~ / t  r a t i o  (2.05 f o r  the  1.5- inch-thick 
composite, 1.50 f o r  t he  0.75-inch-thick composite ) is  markedly higher 
t han  f o r  t he  sma l l e r  specimens. A t  the  f a s t e r  dry ing  r a t e s  t h e  d i f f e r e n c e  
is cons iderable .  The graph i n  Figure 8 shows the  v a r i a t i o n  of  dry ing  rate  
f o r  these  same composites a s  a func t ion  of the  r e s i d u a l  moisture content  
a t  i n t e r v a l s  du r ing  t h e  dry ing  cyc le .  The a i r  gaps shown gave the  maximum 
safe dry ing  r a t e  f o r  t h e i r  r e spec t ive  composites. The drying rates d e t e r -  
mined wi th  the  water and c l a y  systems under maximum condi t ions  a r e  i n  good 
a g r e e m n t  wi th  the  r e s u l t s  r epo r t ed  by Kohler. l 

Figures  9 and 1 0  show the  v a r i a t i o n  o f  percent  moisture l o s s  versus  
time f o r  varying a i r  gaps. The t im  requ i r ed  t o  dry  the  ceramic composite 
was s h o r t e r  as the  a i r  gap between t h e  e l e c t r o d e  and mss was reduced. 
For t he  1.5 and 0.75-inch-thick composites t he  maximum s a f e  r a t e s  of  dry ing  
occurred a t  a i r  gaps o f  5.9 inches and 4.75 inches r e spec t ive ly .  A t  s m l l e r  
a i r  gaps, s p e c i m n s  f a i l e d  when the  high s t r e s s e s ,  developed from water 
vapor p r e s s w e  bui ldup,  exceeded rup tu re  s t r e n g t h  of the  ma te r i a l .  While 
a complete curve was obtained f o r  an a i r  gap of  3.9 inches and the  1.5-inch- 
t h i c k  composite, it was obta inable  only  a f t e r  t he  measurement i n t e r v a l s  i n  
t h e  dry ing  cyc le  were reduced from 10 t o  5 minutes. Specimens l e f t  i n  the  
f i e l d  f o r  1 0  minutes exploded. It can  be assumed, t h e r e f o r e ,  t h a t  t he  
dry ing  r a t e  a t  t he  3.9-inch a i r  gap would be g r e a t e r  t han  shown i n  Figure 9. 

F igures  11 and 13 show t h e  moisture d i s t r i b u t i o n  i n  var ious  s e c t i o n s  
of  t h e  composite a t  t h e  maximum s a f e  drying r a t e .  The bottom o f  t he  com- 
pac t  had a g r e a t e r  dry ing  r a t e  t han  t h e  i n t e r i o r  o r  t h e  upper s ec t ions .  
This  probably was because the  a sbes tos  board in su la t ed  the  bottom a r e a  and 
r e s t r i c t e d  hea t  d i s s i p a t i o n .  The t o p  compact d r i e s  slower than  the  r e s t  
because of t h e  s u r f a c e  cool ing  e f f e c t .  The curves i n  F igures  1 2  and 14 
show t h e  temperature d i s t r i b u t i o n  throughout t he  composites dur ing  the  
d ry ing  cyc le .  Af t e r  90 t o  10% of t he  moisture has  been removed, t he  t e m -  
pe ra tu re  r i s e s  t o  a maximum value  and then  drops of f .  This sha rp  ~ e d u c t i o n  
i n  temperature and h e a t i n g  e f f e c t  r e s u l t s  when the  water is c l o s e  t o  o r  
completely e l imina ted ,  s i n c e  t h e  l o s s  f a c t o r  of t he  mass is reduced. During 
t h e  very  f a s t  d ry ing  c y c l e s  the  temperature may r each  as high as 400 F. 
The moisture vaporized a t  these  temperatures  cannot escape f a s t  enough 
t h r o a h  the  pores ,  and the  specimen is mechanical ly  ruptured .  

Inherent  Var iab les  

Figure' 15 shows the e f f e c t  o f  dry ing  t h e  specimens on s o l i d  asbes tos  
board r a t h e r  t han  d i r e c t l y  on the  conveyor. The drying r a t e  is seen  t o  be 
cons iderably  g r e a t e r  f o r  specimens d r i e d  on a sbes tos ,  probably because of  
t he  reduced hea t  d i s s i p a t i o n .  The bottom compact s t i l l  has a g r e a t e r  dry ing  
r a t e  but no t  as g r e a t  as i n  the  case  when a sbes tos  is used. It is  suggested 
t h a t  t h e  bottom compact l o s e s  water a t  f a s t e r  r a t e  under these  circumstances 



because there  is s t i l l  l i t t l e  evaporation from the lower surfaces ,  and 
water flow is up toward the  evaporating surfaces .  The temperature d i s -  
t r i b u t i o n  of the  composite dr ied  on the  conveyor i t s e l f  is shown i n  
Flgure 16, The temperature a t  the  ceramic-conveyor i n t e r f a c e  is lower 
than i n  the i n t e r i o r  sec t ions .  

In  Figure 1 7  the  e f f e c t  of loading the  high-frequency f i e l d  with a 
group of specimens i n  c o n t r a s t  t o  one specimen alone is i l l u s t r a t e d .  
Contrary t o  the genera l  r u l e  out l ined previously, the experimental r e s u l t s  
indica te  t h a t  the r a t e  of drying f o r  the  sample composite dr ied  alone was 
somewhat g r e a t e r  than those d r i ed  i n  the  presence of o ther  composites. 
It is possible t h a t  the  dry compacts making up the a d d i t i o n a l  load l e d  t o  
an unfavorable change i n  the  e l e c t r i c a l  c h a r a c t e r i s t i c s  of the  t o t a l  load, 
i . e . ,  the  t o t a l  l o s s  f a c t o r  was reduced and thereby the  f i e l d  i n t e n s i t y  i n  
the area of  the  wet compact was reduced. 

The e f f e c t  of the g e o m t r y  of  components t o  be d r i ed  i n  an  e f f o r t  t o  
ga in  g r e a t e r  ~ / t  rat ios,and r e s u l t a n t  heat ing  r a t e s  is i l l u s t r a t e d  i n  
Figure 18. The i d e n t i c a l  specimen standing on i t s  end had a f a s t e r  drying 
r a t e  than when i t  l a y  f l a t .  

Figure 1 9  shows the  drying r a t e  curves fo r  the  composite specimens 
and an  i n t e g r a l  un i t  of the  same dimensions. The r a t e  of drying fo r  the  
i n t e g r a l  un i t  is very c lose  t o ,  t h o u g h  s l i g h t l y  below, t h a t  of the  
c ompos i t e  . 

F'igure 20 shows the  temperature d i s t r i b u t i o n  i n  the  i n t e g r a l  un i t .  
This temperature d i s t r i b u t i o n  was found t o  be s imi la r  t o  t h a t  f o r  the 
t y p i c a l  composite shown i n  Figure 14. 

The f i n a l  phase of t h i s  inves t iga t ion  was undertaken t o  s tudy the  
e f f e c t  of removing specimens from the high-frequency f i e l d  f o r  temperature 
and, moisture gradient  determinations. Table I11 shows the  e f f e c t  of i n t e r -  
rupt ing  the  drying cycle on the  r a t e  of moisture removal. 

TABLE- I11 

EFFECT OF INTERRUPTING DRYING CYCLE ON DRYING RATE 

Volume H20 Sample 70 cc 
A i r  Gap 2.35 Inches 

Cycle Time (Minutes) - 
Interrupted Cycle 
HZO Left in 
Crucible, cc 52 31.4 22.8 17.2 11.4 5.7 2.0 0 

Continuous Cycle 
HZO L e f t  i n  
crucible, cc - - 20 14.3 8.0 - - - 



The r e s u l t s  indicate  t ha t  the removal of specimens from the f i e l d  during 
the drying cycle had only a small e f f e c t  on the drying r a t e .  The di f ference 
between the r a t e s  of drying will increase with time and the length of the 
drying cycle. In  a drying cycle of the durat ion studied above, the maximum 
dif ference i n  drying r a t e  is about 4%. 

CONCLUSIONS 

1. The r e s u l t s  obtained i n  t h i s  invest igat ion show t h a t  r ap id  drying 
r a t e s  for  wet-processed ceramics are obtainable with the d i e l e c t r i c  heating 
method . 

2. The drying r a t e s ,  while determined primari ly by the  voltage drop 
across  the workload (as  evidenced by the var ia t ion  of drying r a t e  with air 
gap) ,  are a l s o  a f fec ted  by frequency, area-thickness r a t i o  of  the component, 
and e l e c t r i c a l  cha r ac t e r i s t i c s  of  the materials  t o  be dried.  The drying 
r a t e  is seen t o  decrease i n  clay-water systems a s  the  percent moisture 
decreases. 

3. Components a r e  heated uniformly i n  the ultrahigh-frequency e lec  - 
t r i c a l  f i e l d ,  with the  i n t e r i o r  temperature of the ware s l i g h t l y  higher 
than i t s  surfaces,  which a r e  cooled dur irg moisture evaporation. Neither 
the  s l i g h t  moisture nor temperature gradients  developed i n  the ware by t h i s  
method was grea t  enough t o  cause cracking and/or warping. 

4. Drying wet-processed ceramics by the d i e l e c t r i c  heating method, 
r 

while not advantageous fo r  low-cost production un i t s  because of high i n i t i a l  
equipment cos t s  and high operating expenses, seems t o  hold i n t e r e s t i ng  
p o s s i b i l i t i e s  f o r  use in  drying high-cost components or component systems 
which arq d i f f i c u l t  t o  dry by other techniques. 
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FIGURE 5: DEPENDENCE OF DRY 1 WG RATE ON A I R  . 
GAP FOR WATER SYSTEM ( ~ / t  1.64) 
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